edexcel

Mark Scheme (Results) June 2008

GCE Mathematics (6683/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

A PEARSON COMPANY

June 2008 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks	
Q1 (a)	0.95 Positive Test		
	0.02 Disease (0.05) Negative Test		
	(0.98) No Disease 0.03 Positive Test		
	(0.97) Negative Test		
	Tree without probabilities or labels 0.02(Disease), 0.95(Positive) on correct branches	M1 A1	
	0.03(Positive) on correct branch.	A1	
(b)	P(Positive Test) = $0.02 \times 0.95 + 0.98 \times 0.03$	[3] M1A1ft	
	= 0.0484	A1 [3]	
(c)	P(Do not have disease Postive test) = $\frac{0.98 \times 0.03}{0.0484}$ = 0.607438 awrt 0.607	M1 A1	
(d)	Test not very useful OR	[2]	
	High probability of not having the disease for a person with a positive test	B1 [1] Total 9	
	(a) M1:All 6 branches. Bracketed probabilities not required. (b) M1 for sum of two products, at least one correct from their diagram A1ft follows from the probabilities on their tree A1 for correct answer only or $\frac{121}{2500}$ (c) M1 for conditional probability with numerator following from their tree and denominator their answer to part (b). A1 also for $\frac{147}{242}$.		

Scheme	Mark	S
50	B1	[1]
$Q_1 = 45$ $Q_2 = 50.5$ ONLY $Q_3 = 63$	B1 B1 B1	[3]
Mean $=\frac{1469}{28} = 52.464286$ awrt 52.5	M1A1	[5]
$Sd = \sqrt{\frac{81213}{28}} - \left(\frac{1469}{28}\right)^2$ = 12 164 or 12 387216 for divisor <i>n</i> -1 awrt 12 2 or 12 4	M1	
$\frac{52.4650}{sd} = \text{awrt } 0.20 \text{ or } 0.21$	M1A1	[4]
1. mode/median/mean Balmoral>mode/median/mean Abbey		[2]
 2. Balmoral sd < Abbey sd or similar sd or correct comment from their values, Balmoral range<abbey range,<br="">Balmoral IQR>Abbey IQR or similar IQR</abbey> 3. Balmoral positive skew or almost symmetrical AND Abbey negative skew, Balmoral is less skew than Abbey or correct comment from their value in (d) 4. Balmoral residents generally older than Abbey residents or equivalent. 		
Only one comment of each type max 3 marks	B1B1B	1 [3] 3
Notes:	100011	<u> </u>
 (c) M1for their 1469 between 1300 and 1600, divided by 28, A1 for awrt 52.5 Please note this is B1B1 on Epen M1 use of correct formula including sq root A1 awrt 12.2 or 12.4 Correct answers with no working award full marks. (d) M1 for their values correctly substituted A1 Accept 0.2 as a special case of awrt 0.20 with 0 missing (e) Technical terms required in correct context in lines 1 to 3 e.g. 'average' and 'spread' B0 1 correct comment B1B0B0 2 correct comments B1B1B1 		
	Scheme 50 $Q_1 = 45$ $Q_2 = 50.5$ ONLY $Q_3 = 63$ Mean $= \frac{1469}{28} = 52.464286$ avrt 52.5 Sd $= \sqrt{\frac{81213}{28} - (\frac{1469}{28})^2}$ = 12.164 or 12.387216for divisor <i>n</i> -1 avrt 12.2 or 12.4 $\frac{52.4650}{sd} = avrt 0.20 \text{ or } 0.21$ 1. mode/median/mean Balmoral>mode/median/mean Abbey 2. Balmoral as < Abbey sd or similar sd or correct comment from their values, Balmoral range <abbey (qr="" iqr<br="" or="" similar="">3. Balmoral positive skew or almost symmetrical AND Abbey negative skew, Balmoral iges skew than Abbey or correct comment from their value in (d) 4. Balmoral positive skew or almost symmetrical AND Abbey negative skew, Balmoral is less skew than Abbey or correct comment from their value in (d) 4. Balmoral residents generally older than Abbey residents or equivalent. Only one comment of each type max 3 marks Notes: (c) M1for their 1469 between 1300 and 1600, divided by 28, A1 for avrt 52.5 Please note this is B1B1 on Epen M1 use of correct formula including sq root A1 avrt 12.2 or 12.4 Correct answers with no working avard full marks. (d) M1 for their values correctly substituted A1 Accept 0.2 as a special case of awrt 0.20 with 0 missing (e) Technical terms required in correct context in lines 1 to 3 e.g. "average" and "spread" B0 1 correct comment B1B0B0 2 correct comments B1B1B1</abbey>	SchemeMark50B1 $Q_1 = 45$ B1 $Q_2 = 50.5$ ONLY $Q_1 = 63$ B1Mean $= \frac{1469}{28} = 52.464286.$ awrt 52.5 $Sd = \sqrt{\frac{81213}{28}} = (\frac{1469}{28})^2$ mil awrt 12.2 or 12.4 $= 12.164$ or 12.387216for divisor $n-1$ awrt 12.2 or 12.4 $1 mode/median/mean Balmoral>mode/median/mean Abbeymil awrt 12.2 or 12.42.8 almoral ageBalmoral rangeOnly or correct comment from their values, Balmoral rangeBalmoral rangeSi skew than Abbey or correct comment from their value in (d)4. Balmoral residents generally older than Abbey residents or equivalent.Only one comment of each type max 3 marksBIB1BNotes:(c) M1 for their 1469 between 1300 and 1600, divided by 28, A1 for awrt 52.5.Please note this is B1B1 on EpenM1 use of correct formula including sq rootA1 awrt 12.2 or 12.4Correct answers with no working award full marks.(d) M1 for their values correctly substitutedA1 Accept 0.2 as a special case of awrt 0.20 with 0 missing(e) Technical terms required in correct context in lines 1 to 3c. g. "avrage" and "spread" B02 correct comment B1B1B03 correct comment B1B1B1$

Question Number	Scheme	Marks
Q3 (a) (b)	$-1 \times p + 1 \times 0.2 + 2 \times 0.15 + 3 \times 0.15 = 0.55$ $p = 0.4$ $p + q + 0.2 + 0.15 + 0.15 = 1$ $q = 0.1$ $Var(X) = (-1)^{2} \times p + 1^{2} \times 0.2 + 2^{2} \times 0.15 + 3^{2} \times 0.15, -0.55^{2}$ $= 2.55 - 0.3025 = 2.2475$ awrt 2.25	M1dM1 A1 M1 A1 [5] M1A1,M1 A1
(c)	E(2X-4) = 2E(X)-4 = -2.9	[4] M1 A1 [2] Total 11
	 Notes: (a) M1 for at least 2 correct terms on LHS Division by constant e.g. 5 then M0 dM1 dependent on first M1 for equate to 0.55 and attempt to solve. Award M1M1A1 for p=0.4 with no working M1 for adding probabilities and equating to 1. All terms or equivalent required e.g. p+q=0.5 Award M1A1 for q=0.1 with no working (b) M1 attempting E(X²) with at least 2 correct terms A1 for fully correct expression or 2.55 Division by constant at any point e.g. 5 then M0 M1 for subtracting their mean squared A1 for awrt 2.25 Award awrt 2.25 only with no working then 4 marks (c) M1 for 2x(their mean) -4 Award 2 marks for -2.9 with no working 	

Question Number	Scheme	Marks	
Q4 (a)	$S_{tt} = 10922.81 - \frac{401.3^2}{15} = 186.6973$ awrt 187	M1A1	
	$S_{\nu\nu} = 42.3356 - \frac{25.08^2}{15} = 0.40184$ awrt 0.402	A1	
	$S_{tv} = 677.971 - \frac{401.3 \times 25.08}{15} = 6.9974$ awrt 7.00	A1	[4]
(b)	$r = \frac{6.9974}{\sqrt{186.6973 \times 0.40184}}$ = 0.807869 awrt 0.808	M1A1ft A1	[3]
(c)	<i>t</i> is the explanatory variable as we can control temperature but not frequency of noise or equivalent comment	B1 B1	[2]
(d)	High value of <i>r</i> or <i>r</i> close to 1 or Strong correlation	B1	[1]
(e)	$b = \frac{6.9974}{186.6973} = 0.03748$ awrt 0.0375	M1A1	
	$a = \frac{25.08}{15} - b \times \frac{401.3}{15} = 0.6692874$ awrt 0.669	M1A1	[4]
(f)	<i>t</i> = 19, <i>v</i> =0.6692874+0.03748x19=1.381406 awrt 1.4	B1 [Total 15	[1]
	Notes:(a) M1 any one attempt at a correct use of a formula.Award full marks for correct answers with no working.Epen order of awarding marks as above.(b) M1 for correct formula and attempt to useA1ft for their values from part (a)NB Special Case for $\frac{677.971}{\sqrt{10922.81 \times 42.3356}}$ M1A0A1 awrt 0.808Award 3 marks for awrt 0.808 with no working(c) Marks are independent. Second mark requires some interpretation in context and can be statements such as 'temperature effects / influences pitch or noise'B1 'temperature is being changed' BUT B0 for 'temperature is changing'(e) M1 their values the right way upA1 for awrt 0.0375M1 attempt to use correct formula with their value of bA1 awrt 0.669(f) wurt 1.4		

Question Number	Scheme		
Q5 (a)	A 30 30 30 10 10 25 10 10 20 C 3 closed intersecting curves with labels 100 100,30 12,10,3,25 Box	M1 A1 A1 B1 [4]	
(b)	P(Substance C) = $\frac{100 + 100 + 10 + 25}{300} = \frac{235}{300} = \frac{47}{60}$ or exact equivalent	M1A1ft [2]	
(c)	P(All 3 A) = $\frac{10}{30+3+10+100} = \frac{10}{143}$ or exact equivalent	M1A1ft [2]	
(d)	P(Universal donor) = $\frac{20}{300} = \frac{1}{15}$ or exact equivalent	M1A1 cao [2] Total 10	
	Notes: (a) 20 not required. Fractions and exact equivalent decimals or percentages. (b) M1 For adding their positive values in C and finding a probability A1ft for correct answer or answer from their working (c) M1 their 10 divided by their sum of values in A A1ft for correct answer or answer from their working (d) M1 for 'their 20' divided by 300 A1 correct answer only		

Question Number	Scheme			Marks	
Q6 (a)	F(4)=1 (4+k) ² = 25 k = 1 as k > 0				M1 A1 [2]
(b)	x P(X=x)	$\frac{\frac{2}{9}}{\frac{25}{25}}$	$\frac{3}{\frac{7}{25}}$	$\frac{4}{9}$	B1ftB1B1 [3] Total 5
	Notes: (a) M1 for use of F(4) F(2)+F(3)+F(4)=1 M0 A1 for <i>k</i> =1 and ignore (b) B1ft follow throug inclusive. B1 correct answer onl B1 correct answer onl	= 1 only If F(2)=1 and e k = -9 th their k for P(X=2) of y or exact equivalent y or exact equivalent	nd / or F(3)=1 seen th	en M0. ween 0 and 1	

Question Number	Scheme	Marks
Q7 (a)	$z = \frac{53 - 50}{2}$ P(X>53)=1-P(Z<1.5) =1-0.9332 0.0660 Attempt to standardise 1-probability required can be implied	M1 B1
(b)	$=0.0668$ $P(X \le x_0) = 0.01$ $\frac{x_0 - 50}{2} = -2.3263$	A1 [3] M1 M1B1
(c)	$x_0 = 45.3474$ awrt 45.3 or 45.4 P(2 weigh more than 53kg and 1 less) = $3 \times 0.0668^2(1-0.0668)$ = 0.012492487 awrt 0.012	M1A1 [5] B1M1A1ft A1 [4] Total 12
	Notes: (a) M1 for using 53,50 and 2, either way around on numerator B1 1- any probability for mark A1 0.0668 cao (b) M1 can be implied or seen in a diagram or equivalent with correct use of 0.01 or 0.99 M1 for attempt to standardise with 50 and 2 numerator either way around B1 for ± 2.3263 M1 Equate expression with 50 and 2 to a <i>z</i> value to form an equation with consistent signs and attempt to solve A1 awrt 45.3 or 45.4 (c) B1 for 3, M1 $p^2(1-p)$ for any value of <i>p</i> A1 ft for <i>p</i> is their answer to part (a) without 3 A1 awrt 0.012 or 0.0125	